Luminosity thresholds: effects of test chromaticity and ambient illumination.
نویسندگان
چکیده
Color constancy is often modeled on the assumption that color appearance in natural scenes is a function of the visual system's estimates of surface reflectance. Some stimuli, however, do not look like illuminated surfaces. Instead, they appear to be self-luminous. We hypothesized that the appearance of luminosity occurs when the visual system estimates a reflectance spectrum that is outside the gamut of physically realizable surfaces. To test this idea, we measured luminosity thresholds as a function of stimulus chromaticity and illuminant spectral power distribution. Observers adjusted the luminance of a test patch until it just appeared self-luminous. The test patch was spot illuminated by a computer-controlled projection colorimeter viewed in an experimental room lit diffusely by computer-controlled theater lamps. Luminosity thresholds were determined for a number of test patch chromaticities under five experimental illuminants. The luminosity thresholds define a surface in color space. The shape of this surface depends on the illuminant. We were able to describe much of the luminosity threshold variation with a simple model whose parameters define an equivalent illuminant. In the context of our model, the equivalent illuminant may be interpreted as the illuminant perceived by the observer. As part of our model calculations we generalized the classic notion of optimal stimuli by incorporating linear-model constraints. Given the equivalent illuminant, the model predicts that a patch will appear self-luminous when it is not consistent with any physically realizable surface seen under that illuminant. In addition, we show that much of the variation of the equivalent illuminant with the physical illuminant can be modeled with a simple linearity principle. The fact that our model provides a good account of our data extends the physics-based approach to judgements of self-luminosity. This in turn might be taken as support for the notion that the visual system has internalized the physics of reflectance.
منابع مشابه
Learning Color Constancy
We decided to test a surprisingly simple hypothesis; namely, that the relationship between an image of a scene and the chromaticity of scene illumination could be learned by a neural network. The thought was that if this relationship could be extracted by a neural network, then the trained network would be able to determine a scene's illumination from its image, which would then allow correctio...
متن کاملEffects of ambient illumination, contrast polarity, and letter size on text legibility under glance-like reading.
Recent research on the legibility of digital displays has demonstrated a "positive polarity advantage", in which black-on-white text configurations are more legible than their negative polarity, white-on-black counterparts. Existing research in this area suggests that the positive polarity advantage stems from the brighter illumination emitted by positive polarity displays, as opposed to the da...
متن کاملIllumination discrimination in real and simulated scenes
Characterizing humans' ability to discriminate changes in illumination provides information about the visual system's representation of the distal stimulus. We have previously shown that humans are able to discriminate illumination changes and that sensitivity to such changes depends on their chromatic direction. Probing illumination discrimination further would be facilitated by the use of com...
متن کاملProcessing of color- and noncolor-coded signals in the gourami retina. I. Horizontal cells.
There are two types of horizontal cells, the luminosity and the chromaticity cells, in the retina of the kissing gourami, Helostoma rudolfi. Luminosity cells occupy the outermost layer proximal to the receptor terminals, whereas chromaticity cells form a layer proximal to the layer of luminosity cells. Neither type of cell has axons. Responses were evoked by light from red and green light-emitt...
متن کاملEffects of Illumination Conditions and Chromaticity Contrast on Reading Performance
This study investigated the effects of illumination conditions (lighting color and illumination intensity) and chromaticity contrast on reading performance with TFT-LCD screens. Results indicated that the illumination intensity and background color had significant effects on reading performance in experiment 1. In experiment 2, only text color significantly affected reading performance. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 13 3 شماره
صفحات -
تاریخ انتشار 1996